Our website uses cookies to improve your on-site experience. By using the website, cookies are being used as described in our Policy Document
Warning: To log in you will need to enable cookies and reload the page (Policy Document)
My ePortfolio Register   

Study provides new understanding of mitochondria genome with potential for new avenues of treatment for multiple cancers

A study led by The University of Texas MD Anderson Cancer Center furthered understanding about mitochondria, the cell components known as the "powerhouse of the cell." Knowing more about the genome is crucial given that mitochondria play important roles in tumorigenesis.

Findings were published in Nature Genetics and resulted through collaboration with the International Cancer Genome Consortium - The Cancer Genome Atlas Pan--Cancer Analysis of Whole Genomes (PCAWG) project, an effort involving more than 1,300 scientists and clinicians from 37 countries.

Since its inception, the PCAWG has analysed more than 2,600 genomes across 38 tumour types.

"This study lays a foundation for translating mitochondrial biology into clinical applications," said Han Liang, Ph.D., professor of Bioinformatics & Computational Biology.

"Our analysis presents the most definitive mutational landscape of mitochondrial genomes and identifies several hyper-mutated cases. Such truncated mutations are remarkably enriched in kidney, colorectal and thyroid cancers, suggesting oncogenic impact with the activation of signalling pathways."

Mitochondria are crucial cellular organelles, with a single human cell containing several hundred mitochondria.

The cell components play essential roles in generating most of the cell's energy through a process known as oxidative phosphorylation.

The mitochondrial genome encodes 13 proteins that form respiratory chain complexes with other proteins.

"The involvement of mitochondria in carcinogenesis has long been suspected because altered energy metabolism is a common feature of cancer," said Liang. "Furthermore, mitochondria play important roles in other tasks, such as biosynthesis, signalling, cellular differentiation, cell growth and death."

The team found that the mitochondrial genome is an essential component in understanding the complex molecular patterns observed in cancer genomes and helping to pinpoint potential cancer driver events.

"Our results underscore the clinical importance of mitochondria. This study has untangled and characterised the full spectrum of molecular alterations of mitochondria in human cancers," said Liang. "We have highlighted the function of mitochondrial genes in oxidative phosphorylation, DNA repair and cell cycle, showing their connections with clinically actionable genes."

Source: University of Texas M.D. Cancer Center



Please click on the 'New Comment' link to the left to add a new comment, or alternatively click any 'Add Comment' link next to any existing post to respond. The views expressed here are not those of ecancer. For more information please view our Privacy Policy.

Founding partners

European Cancer Organisation European Institute of Oncology

Founding Charities

Foundazione Umberto Veronesi Fondazione IEO Swiss Bridge

Published by

ecancer Global Foundation