Our website uses cookies to improve your on-site experience. By using the website, cookies are being used as described in our Policy Document
Warning: To log in you will need to enable cookies and reload the page (Policy Document)
My ePortfolio Register   

Researchers take a step toward automating thyroid cancer triage

According to an article published in the American Journal of Roentgenology (AJR), a Stanford University team has developed a quantitative framework able to sonographically differentiate between benign and malignant thyroid nodules at a level comparable to that of expert radiologists, which may prove useful for establishing a fully automated system of thyroid nodule triage.

Alfiia Galimzianova et al. retrospectively collected ultrasound images of 92 biopsy-confirmed nodules, which were annotated by two expert radiologists using the American College of Radiology's Thyroid Imaging Reporting and Data System (TI-RADS).

In the researchers' framework, nodule features of echogenicity, texture, edge sharpness, and margin curvature properties were analysed in a regularised logistic regression model to predict nodule malignancy.

Authenticating their method with leave-one-out cross-validation, the Stanford team used ROC AUC, sensitivity, and specificity to compare the framework's results with those obtained by six expert annotation-based classifiers.

The AUC of the proposed framework measured 0.828 (95% CI, 0.715-0.942) - "greater than or comparable," Galimzianova noted, "to that of the expert classifiers" - whose AUC values ranged from 0.299 to 0.829 (p = 0.99).

Additionally, in a curative strategy at sensitivity of 1, use of the framework could have avoided biopsy in 20 of 46 benign nodules - statistically significantly higher than three expert classifiers.

In a conservative strategy at specificity of 1, the framework could have helped to identify 10 of 46 malignancies - statistically significantly higher than five expert classifiers.

"Our results confirm the ultimate feasibility of computer-aided diagnostic systems for thyroid cancer risk estimation," concluded Galimzianova. "Such systems could provide second-opinion malignancy risk estimation to clinicians and ultimately help decrease the number of unnecessary biopsies and surgical procedures."

Source: American Roentgen Ray Society

0

Comments

Please click on the 'New Comment' link to the left to add a new comment, or alternatively click any 'Add Comment' link next to any existing post to respond. The views expressed here are not those of ecancer. For more information please view our Privacy Policy.



Founding partners

European Cancer Organisation European Institute of Oncology

Founding Charities

Foundazione Umberto Veronesi Fondazione IEO Swiss Bridge

Published by

ecancer Global Foundation